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ABSTRACT 

The relationship between point and area precipitation probabilities is examined on the basis of a simple model in 
which circular precipitation cells of uniform size are distributed at random over an  area that is large compared to the 
forecast area. From knowledge of the cell size and the number of cells per unit area it is then possible to state both 
the point and area precipitation probabilities. When the 
cells are large, point and area precipitation probabilities are almost equal, but they differ markedly when the cells are 
small. An extension 
of the model is presented in which uncertainty regarding the density of cells is expressed as an elementary probability 
density, and the effects of this on the expected point and area precipitation probabilities are shown. 

Formulas and graphs of these relationships are shown. 

Joint and conditional probabilities of precipitation a t  two or more stations are also examined. 

The present practice among forecasters is to express 
precipitation forecasts in probabilistic terms. These prob- 
abilities are specifically point probabilities, i.e., the 
probability that measurable precipitation will be observed 
during the forecast period at one, or any, given point 
in the forecast area. The probabilities are specifically not 
area probabilities, i.e., the probability that measurable 
precipitation will be observed a t  some point in the forecast 
area during the forecast period. The relationship between 
area and point probabilities has been a source of some 
confusion. The purpose of this note is to shed some light 
on this subject. 

Let u s  consider the area for which the forecast is valid 
as our unit area, and suppose that during a given period 
there are N precipitation cells per unit area distributed a t  
random (i.e., all locations are equally likely) over an area 
large compared to the forecast area. We will consider 
that each precipitation cell covers an area Q. For sim- 
plicity we will assume that both the forecast area and the 
precipitation cells are circular, thus having radii of ( 1 / ~ ) ~ ' ~  
and (QT) l/*, respectively. The area probability of precipi- 
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tation is then equivalent to the probability that one or 
more cells occur within an area of 

a[ (1 /a> 1'2 + (&/a) '1 '= [ 1 + &"213" 
(see fig. 1). The point probability of precipitation is the 
probability that one or more cells occur within an area Q 
surrounding the observation point. 

The probability that k cells fall within the area Q is, 
from the Poisson probability distribution, 

e-"Q(NQ)'/k!. 

The probability that one or more cells fall in that area, 
Le., the point probability of precipitation, is then 

P P -  -l-e-NQ. (1) 

Similarly, the area probability of precipitation is 

Furthermore, one can see that the area and point proba- 
bilities are related by 
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FIGURE 1 .--Sny cell located within the largc dashed circle produces 
precipitation in the forecast area (large solid circle). Any cell 
located within the small dashed circle produces precipitation at 
station A. The small solid circles represent precipitation cells. 

I These relationships are shown in figure 2. For large Q, 
Pa and P ,  approach each other asymptotically. In  other 
words, when the precipitation cells are large, if precipita- 
tion occurs a t  any point in an area it is likely to occur a t  
all points in the area. 

It is reasonable to expect a seasonal variation in cell 
size. During summer, when convective type storms pre- 
dominate, Q will be small and area probabilities near I 
may correspond to quite small point probabilities of pre- 
cipitation (cf. McDonald, [I]). During winter, when large 
cyclonic systems produce much of the precipitation, Q will 
be large and area and point probabilities will not differ 
much. 

These arguments can be extended to probabilities of 
precipitation at two or more stations. If the separation 
between the stations, 6, is greater than the diameter of the 
precipitation cells, then from the earlier assumption of 
randomness, the probabilities of precipitation at the two 
stations are inde~endent .~ If events A and B represent, 
respectively, the occurrence of precipitation at stations 
A and B, then, for 6 2 2 ( & / ~ ) " ~ ,  

Prob { A }  =Prob { B }  =Pp,  

Prob { A ,  B}=P& 

Prob { A+B}=2P,-P~=1-((1-P,)2.  

* If w e  had not sssumed circular cells, but instead elongated cell tracks, w e  could not 
have made this statement. In that case the orientation of the tracks and stations 
becomes important and leads to a far more complicated analysls. 
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FIGURE 2.-The straight solid lines are lines of equal point proba- 
The curved dashed lines are lines of 

The ordinate Q is the 
Q = 1  indicates a cell sizc equal 

N is the number of cells per forecast area. 

bility of precipitation. 
equal area probability of precipitation. 
area of each precipitation cell. 
t o  the forecast area. 

However if 6<2(&/~)' / '=2r,  then the area in which a cell 
must occur to give precipitation is that enclosed by the 
intersecting circles in figure 3. The area of this region is 

=2  Q- 2 ( Q/T) COS-' ( 6 / 2 ~ )  f 6[r2- (6'/4) 1 1/2 

and tbe probability of precipitation at  either A or B is 

P2=Prob { A+BJ = l - e e N Y ,  

- - 1 - (1 - p,)2- (2/8) (COB-'  (6/27) - (6/Zr[l-(6/2r)21 1/2]. 

Curves of Pz versus 6/2r are shown in figure 4 as solid 
curves for various values of P,. Also plotted in this figure 
are the conditional probabilities, Pc=2- (P2 /P , ) ,  of pre- 
cipitation at  one station giver, the occurrence of precipita- 
tion at  another station at  a distance 6. 

Similar extensions to any network of stations are pos- 
sible. All t)hat is necessary is a knowledge of the geometry 
of the station network. Some results of kXk square 
arrays of stations are shown in figure 5. 

From the point, of view of forecasting precipitation 
probabilities, direct estimation of point probabilities may 
well be the forecaster's most effective procedure. The 
forecaster could then infer, from equation (I), the product 
NQ. Given additional information (climatological, synop- 
tic, etc.) on the expected cell size, the forecaster could 
then also infer from his estimate of P ,  such things as 
N and P,. 

On the other hand, the forecaster may ultimately find 
it easier to forecast N, or at least its expected value. If 
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FIGURE 3.-Geometry for determining the probability of precipi- 
tation at  station A or station B when 6, the distance between 
the stations, is less than the cell diameter 2r. 
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FIGURE 4.-The probability of precipitation at either of two stations 
(solid curves) and the conditional probability of precipitation at  
one station given the occurrence of precipitation at  another 
station (dashed curves). Both sets of curves are plotted against 
the ratio of the distance between the stations to  the cell diameter 
and are labeled according t o  P,, the point probability of precipi- 
tation. 

one assumes that Q is known, and treats N as a mndom 
variable, assuming some simple probability distribution, 
it becomes possible to infer, from tthe forecast of the 
expectcation of N ,  E ( N ) ,  the expected values of P,, and 
also Pa. 

For example, let us consider that N has an exponential 
distribution with mean v, i.e., 

Prob { Nl<N<NZ ] = J N z  (l/u)e-NIYdN. 
NI 

I .c 

C .- 

.a  

Y) c 
0 .- 

.7 
c In 
f! 
E .6 
E 3  

0 

al E 
0 
c 
O .5 
5 .- 
c 
c 0 

a .- 
.- 
0 .4 
?2 
L 

. I  

0 I I 

.2 .4 .6 .8 I 

Point Probability of Precipitation 

FIGURE 5.-The probability of precipitation at  one or more stations 
in a square array, as a function of the point probability of pre- 
cipitation. The curves are labeled according to  the ratio of thc 
station spacing to  the cell diameter and the number of stations 
in the network. 

Then 

E(P,) = s (1 - e-NQ) (1 / v )  e-Nlvd N ,  
0 

= &v/(&v+ 1) (3) 
and 

Graphs of EP, and EPa against v and Q are shown in 
figure 6. 

If the probability distribution for N were somewhat 
more general, specifically a gamma distribution with mean 
v and variance &‘, then 

E(.?‘,) = I  -[ (nzQ&/v) + 1]-‘’/u’2 
and 

E(P,) = 1 - { (cT”v)[ 1 + &‘/”I”+ 1 } --(”/‘)p 
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FIGURE 6.-The expected point probability (straight solid lines) 
and area probability (curved dashed lines) of precipitation when 
the number of cells per forecast area has an  exponential distri- 
bution with espected value Y, and Q is the area of each cell. 
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This reduceas to the case for the exponential distribution 
when u=v. I t  also approaches equat,ions (1) and ( 2 )  as 
u approaches zero, implying N= Y with certainty. 

Finally, consider a comparison of the results for  known 
N (equations (1) and ( 2 ) )  with those when N is a random 
variable with an exponential distribution and expected 
value v (equations ( 3 )  and (4)). The functional forms of 
these equations are similar, making it possible to show 
these relationships in a single graph. Figure 7 is basically 
a graph of two functions, l--e-$ and x / ( z + 1 ) ,  versus 5. 
For point probabilities, one can interpret z as QN or Qv. 
Then the two curves give the point probabilities of precipi- 

I 

FIGURE 7.-The dashed curve gives the point probability of pre- 
cipitation, p,, if x is taken as QN, and the area probability of 
precipitation, Pa, if z is taken as [I + Q’/2]2 N. The solid curvc 
gives E(P,) and E(P.) when x is interpreted as QY and [l +Q’’2]2 
Y, respectively, assuming N has an  exponential distribution with 
E(N)=v. If N has a gamma distribution with E(N)=v and 
Var(N)<v*, the curve of E(P,) and E(P,) would lie between 
the two curves shown. For Var ( N ) > Y ~ ,  the appropriate curve 
would lie below those shown. CORRECTION: Change dashed 
curve label to 1 -P 

tation when N is known and when N is a random variable, 
respectively. For area probabilities, the same is true if 
x is interpreted as [l+Q1/2PN or [ 1 + Q 1 ’ 2 1 2 ~ .  

The difference between the ordinates represents the 
penalty for uncertainty, a t  least when the uncertainty is 
expressed in terms of an exponential distribution for N .  
For example, if QN is known to be 1.0, P,=0.632. Hom- 
ever, if N has an exponential distribution such that 
QE(N)=Qv=l.O, then E(P,)=O.5. One is unable to 
state as high a probability of precipitation because of the 
strong implied probability that W<V which outweighs the 
effect of the less probable occurrence of N>>v.  
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